Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons.
نویسنده
چکیده
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental carcinogens and metabolized by a variety of xenobiotic-metabolizing enzymes such as cytochrome P450 (P450 or CYP), epoxide hydrolase, glutathione transferase, UDP-glucuronosyltransferase, sulfotransferase, NAD(P)H quinone oxidoreductase 1, and aldo-keto reductase. These enzymes mainly participate in the conversion of PAHs to more polar and water-soluble metabolites, and the resultant metabolites are readily excreted from the body. However, during the course of metabolism, a variety of unstable and reactive intermediates of PAHs are formed, and these metabolites attack DNA, causing cell toxicity and transformation. P450s and epoxide hydrolase convert PAHs to proximate carcinogenic metabolites, PAH-diols, and these products are further metabolized by P450s to ultimate carcinogenic metabolites, PAH diol-epoxides, or by aldo-keto reductase to reactive PAH o-quinones. PAHs are also activated by P450 and peroxidases to reactive radical cations that bind covalently to DNA. The oxygenated and reactive metabolites of PAHs are usually converted to more polar and detoxified products by phase II enzymes. Inter-individual differences exist in levels of expression and catalytic activities of a variety of enzymes that activate and/or detoxify PAHs in various organs of humans and these phenomena are thought to be critical in understanding the basis of individual differences in response to PAHs. Factors affecting such variations include induction and inhibition of enzymes by diverse chemicals and, more importantly, genetic polymorphisms of enzymes in humans.
منابع مشابه
Drug-metabolizing enzymes: mechanisms and functions.
Drug-metabolizing enzymes are called mixed-function oxidase or monooxygenase and containing many enzymes including cytochrome P450, cytochrome b5, and NADPH-cytochrome P450 reductase and other components. The hepatic cytochrome P450s (Cyp) are a multigene family of enzymes that play a critical role in the metabolism of many drugs and xenobiotics with each cytochrome isozyme responding different...
متن کاملInhibition of Carcinogen-Activating Cytochrome P450 Enzymes by Xenobiotic Chemicals in Relation to Antimutagenicity and Anticarcinogenicity
A variety of xenobiotic chemicals, such as polycyclic aromatic hydrocarbons (PAHs), aryl- and heterocyclic amines and tobacco related nitrosamines, are ubiquitous environmental carcinogens and are required to be activated to chemically reactive metabolites by xenobiotic-metabolizing enzymes, including cytochrome P450 (P450 or CYP), in order to initiate cell transformation. Of various human P450...
متن کاملSusceptibility to Lung Cancer with CYP1A1, GSTM1, GSTM3, GSTT1 and GSTP1 SNPs in Inner Mongolia
Epidemiological studies have shown that lung cancer is associated with tobacco and alcohol use, and is common in regions where these products are often consumed. Similar to other environmental toxins, tobacco requires metabolic activation and subsequent detoxification by a series of enzymes such as phase I enzymes i-e the cytochrome P450 enzymes (CYP) and phase II xenobiotic metabolizing enzyme...
متن کاملAntioxidant Functions of the Aryl Hydrocarbon Receptor
The aryl hydrocarbon receptor (AhR) is a transcription factor belonging to the basic helix-loop-helix/PER-ARNT-SIM family. It is activated by a variety of ligands, such as environmental contaminants like polycyclic aromatic hydrocarbons or dioxins, but also by naturally occurring compounds and endogenous ligands. Binding of the ligand leads to dimerization of the AhR with aryl hydrocarbon recep...
متن کاملCadmium Alters the Biotransformation of Carcinogenic Aromatic Amines by Arylamine N-Acetyltransferase Xenobiotic-Metabolizing Enzymes: Molecular, Cellular, and in Vivo Studies
BACKGROUND Cadmium (Cd) is a carcinogenic heavy metal of environmental concern. Exposure to both Cd and carcinogenic organic compounds, such as polycyclic aromatic hydrocarbons or aromatic amines (AAs), is a common environmental problem. Human arylamine N-acetyltransferases (NATs) are xenobiotic-metabolizing enzymes that play a key role in the biotransformation of AA carcinogens. Changes in NAT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and pharmacokinetics
دوره 21 4 شماره
صفحات -
تاریخ انتشار 2006